One-Pot, Mix-and-Read Peptide-MHC Tetramers
نویسندگان
چکیده
BACKGROUND Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL's are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL's. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers. METHODOLOGY/PRINCIPAL FINDINGS We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC). Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins). It is simple, robust, and versatile technique with a very broad application potential as it can be adapted both to small- and large-scale production of one or many different peptide-MHC tetramers for T cell isolation, or epitope screening.
منابع مشابه
Use of “one-pot, mix-and-read” peptide-MHC class I tetramers and predictive algorithms to improve detection of cytotoxic T lymphocyte responses in cattle
Peptide-major histocompatibility complex (p-MHC) class I tetramer complexes have facilitated the early detection and functional characterisation of epitope specific CD8+ cytotoxic T lymphocytes (CTL). Here, we report on the generation of seven recombinant bovine leukocyte antigens (BoLA) and recombinant bovine β2-microglobulin from which p-MHC class I tetramers can be derived in ~48 h. We valid...
متن کاملNew design of MHC class II tetramers to accommodate fundamental principles of antigen presentation.
Direct identification and isolation of Ag-specific T cells became possible with the development of MHC tetramers, based on fluorescent avidins displaying biotinylated peptide-MHC complexes. This approach, extensively used for MHC class I-restricted T cells, has met very limited success with class II peptide-MHC complex tetramers (pMHCT-2) for the detection of CD4(+)-specific T cells. In additio...
متن کاملIsolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers.
Immunogenic peptides of human tumor Ag have been used to generate antigen-specific CTL. However, the vast majority of these peptide-specific CTL clones are of low avidity and are peptide, but not tumor, reactive. Peptide-MHC tetramers have been shown to bind specific TCRs with sufficient affinity to be useful reagents for flow cytometry. In this paper we demonstrate that peptide-MHC tetramers c...
متن کاملEngineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies
Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a n...
متن کاملSpecificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent.
Tetrameric peptide-MHC class I complexes ("tetramers") are proving invaluable as reagents for characterizing immune responses involving CTLs. However, because the TCR can exhibit a degree of promiscuity for binding peptide-MHC class I ligands, there is potential for cross-reactivity. Recent reports showing that the TCR/peptide-MHC interaction is dramatically dependent upon temperature led us to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008